The magnetic field between the metal rails as shown below is uniform

Physics 2202-101  

Don't use plagiarized sources. Get Your Custom Essay on
The magnetic field between the metal rails as shown below is uniform
Just from $13/Page
Order Essay

1) The magnetic field between the metal rails as shown below is uniform and directed

into the page. It has magnitude 0.3 T. The metal bar can slide with minimal friction while

still maintaining electrical contact at both ends with the rails. Someone pushing (or

pulling ) the bar can induce current in the external resistor attached as shown. The bar

and rails have negligible resistance.

 

a) How much current flows in the resistor if the rate of thermal energy produced in the

resistor is 5 Watts?  Determine the induced  EMF and the speed (assumed constant) at

which the bar is sliding.

b) What effect does the direction of motion have on the behavior of the circuit? Discuss

and be specific.

c) How much force has to be applied to generate 5 Watts of thermal power as described?

Describe the motion of the bar if the person stopped pushing while the bar was in motion.

Are any forces still acting on the bar once the person stops pushing? Discuss.

 

2)  A 0.3 kg bar slides vertically down a set of rails at a terminal speed v while a 1.24 m

section of the bar is immersed in a uniform magnetic field of magnitude 0.4 T directed

horizontally ( out of the page).  The resistance of the bar is 0.2 O . The rails have

resistance 0.4 O.

a) Determine v.

 

b) In which direction does the induced current flow? Be specific and explain how you

know.

c) Compare, through calculation, the amount of work done on the bar by gravity to the

thermal (internal) energy generated in the bar and the rails as the bar falls 0.5 m.

 

3) Imagine a bar magnet that is dropped and falls through a very compact, tightly wound

coil.Even though the magnetic field of the magnet is constant in time to an observer at

rest with the magnet, an observer at rest with the coil  will observe a magnetic field

across the cross-section of the coil that varies with time. As a result, this second observer

would record a time varying flux through the coil cross-section. The graph below

represents an idealized representation of how the flux would vary with time as the magnet

falls through the coil. Positive flux here is associated with field lines that point in the

positive z direction, so imagine an observer looking into the coil from below.

 

a) Consider each section of graph where the flux is constant.  Where must the magnet be

relative to the coil during each of these segments? Make sketches so I know exactly what

you mean and explain your reasoning.

b) Sketch a graph of the induced EMF in the coil versus time. It should clear how your

graph correlates with the graph of f versus time. A positive EMF corresponds to

counterclockwise current circulation as seen by an observer looking up into the coil.

 

4) The larger circle in the diagram below represents a coil that is part of a circuit

containing a DC voltage source. The smaller circle represents a second coil that is placed

inside the larger coil. It is also part of a circuit, but this circuit does not include a voltage

source. The second coil has 400 turns of wire and a diameter of 15 cm. Initially the larger

coil is disconnected from the voltage source but as soon as a connecting switch is closed

the current in the coil begins to rise according to:

time and a=0.34 s

-1

I(t) = 0.6amps(1- e

-at

. The resulting magnetic field (directed out of the page) depends on I according to: 

B(I) = (0.47

Tesla amp) where t is the )I and is uniform over the cross section of the larger coil.

a) Derive a formula for the induced EMF in the smaller coil as a function of time.

b) In which direction will current flow in the smaller coil? Explain how you know.

c) Will this induced current increase, decrease or stay the same over time? Explain your

 

answer. 

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more